
登录

扫码下载蜻蜓app 听书/听小说/听故事
4.5亿用户的选择
这期《TAI快报》我们聊了五篇前沿AI论文:
- Towards Quantifying the Hessian Structure of Neural Networks:揭示了神经网络海森矩阵“块对角”结构的真正驱动力是类别数量,而非交叉熵损失,为优化算法设计提供了新视角。
- Discrete Spatial Diffusion: Intensity-Preserving Diffusion Modeling:提出离散空间扩散框架,通过颗粒随机游走实现质量守恒,拓展了扩散模型在科学领域的应用。
- Steerable Scene Generation with Post Training and Inference-Time Search:开发了可控3D场景生成方法,用强化学习和搜索引导生成,满足机器人训练的特定需求。
- Practical Efficiency of Muon for Pretraining:证明Muon优化器在语言模型预训练中比AdamW更省资源,并提出“伸缩式”调参算法,提升训练效率。
- What do Language Model Probabilities Represent?:澄清了语言模型概率的三种含义,提醒我们在使用和评估时要明确目标,避免误解。
完整推介:mp.weixin.qq.com