00:01:33 “差生”配对,如何“炼”出优等生?
00:06:09 AI的“刻意练习”:怎样探索才最高效?
00:10:19 让AI学会顶尖“手艺活”,这事儿靠谱吗?
00:14:35 黑箱里的光:我们好像找到了AI学习的秘密开关
00:19:47 AI 程序员的“心事”:它真的懂你的需求吗?
今天介绍的五论文:
[LG] The Delta Learning Hypothesis: Preference Tuning on Weak Data can Yield Strong Gains
[University of Washington]
https://arxiv.org/abs/2507.06187
---
[LG] Epistemically-guided forward-backward exploration
[ETH Zurich & University of Tübingen]
https://arxiv.org/abs/2507.05477
---
[LG] AutoTriton: Automatic Triton Programming with Reinforcement Learning in LLMs
[Tsinghua University]
https://arxiv.org/abs/2507.05687
---
[LG] FACT: the Features At Convergence Theorem for neural networks
[MIT & UCSD & UC Berkeley]
https://arxiv.org/abs/2507.05644
---
[CL] Coding Triangle: How Does Large Language Model Understand Code?
[Shanghai AI Laboratory]
https://arxiv.org/abs/2507.06138