00:00:34 让AI更“有谱儿”:不止一条路通罗马
00:05:21 如何让AI更聪明?一个“求稳”的智慧
00:09:14 造车新智慧:如何用“搬沙子”的办法,算出最省油的外形?
00:12:31 AI也会“路径依赖”?一个简单动作,让它“老树发新芽”
00:17:01 AI炼丹术:我们如何“教会”机器遵守化学规则?
00:21:50 AI进化论:从“死记硬背”到“自我成长”
本期介绍的几篇论文:
[LG] Flow Matching Policy Gradients
[UC Berkeley]
https://arxiv.org/abs/2507.21053
---
[CL] Geometric-Mean Policy Optimization
[Microsoft Research]
https://arxiv.org/abs/2507.20673
---
[LG] Geometric Operator Learning with Optimal Transport
[California Institute of Technology & Nvidia]
https://arxiv.org/abs/2507.20065
---
[LG] What Can Grokking Teach Us About Learning Under Nonstationarity?
[Google DeepMind]
https://arxiv.org/abs/2507.20057
---
[LG] Enhancing Materials Discovery with Valence Constrained Design in Generative Modeling
[MIT]
https://arxiv.org/abs/2507.19799
---
[LG] A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
https://arxiv.org/abs/2507.21046